## Safety Precautions

Be sure to read the following safety precautions before using this calculator. Keep this manual handy for later reference.

## ! Caution

This symbol is used to indicate information that can result in personal injury or material damage if ignored.

## Batteries

- After removing the battery from the calculator, put it in a safe place where it will not get into the hands of small children and accidentally swallowed.
- Keep batteries out of the reach of small children. If accidentally swallowed, consult with a physician immediately.
- Never charge batteries, try to take batteries apart, or allow batteries to become shorted. Never expose batteries to direct heat or dispose of them by incineration.
- Misuse of batteries can cause them to leak and damage nearby items, and can create the risk of fire and personal injury.
- Always make sure that the battery's positive $\oplus$ and negative $\Theta$ ends are facing correctly when you load it into the calculator.
- Remove the battery if you do not plan to use the calculator for a long time.
- Use only the type of battery specified for this calculator in this manual.


## Disposing of the Calculator

- Never dispose of the calculator by burning it. Doing so can cause certain components to suddenly burst, creating the risk of fire and personal injury.
- The displays and illustrations (such as key markings) shown in this User's Guide are for illustrative purposes
only, and may differ somewhat from the actual items they represent.
- The contents of this manual are subject to change without notice.


## Handling Precautions

- Be sure to press the $\mathrm{ON}^{\mathrm{N}}$ key before using the calculator for the first time.
- Even if the calculator is operating normally, replace the battery at least once every three years
A dead battery can leak, causing damage to and malfunction of the calculator. Never leave a dead battery in the calculator.
- The battery that comes with this unit discharges slightly during shipment and storage. Because of this, it may require replacement sooner than the normal expected battery life.
- Low battery power can cause memory contents to become corrupted or lost completely. Always keep written records of all important data.
- Avoid use and storage in areas subjected to temperature extremes.
Very low temperatures can cause slow display response, total failure of the display, and shortening of battery life. Also avoid leaving the calculator in direct sunlight, near a window, near a heater or anywhere else it might be exposed to very high temperatures. Heat can cause discoloration or deformation of the calculator's case, and damage to internal circuitry.
- Avoid use and storage in areas subjected to large amounts of humidity and dust.
Take care never to leave the calculator where it might be splashed by water or exposed to large amounts of humidity or dust. Such conditions can damage internal circuitry.
- Never drop the calculator or otherwise subject it to strong impact.
- Never twist or bend the calculator.

Avoid carrying the calculator in the pocket of your trousers or other tight-fitting clothing where it might be subjected to twisting or bending.

- Never try to take the calculator apart.
- Never press the keys of the calculator with a ballpoint pen or other pointed object.
- Use a soft, dry cloth to clean the exterior of the calculator.
If the calculator becomes very dirty, wipe it off with a cloth moistened in a weak solution of water and a mild neutral household detergent. Wring out all excess moisture before wiping the calculator. Never use thinner, benzene or other volatile agents to clean the calculator. Doing so can remove printed markings and can damage the case.


## Two-line Display

```
#%,4%,%%%
```

The two-line display makes it possible to view both the calculation formula and its result at the same time.

- The upper line shows the calculation formula.
- The lower line shows the result.

A separator symbol is displayed every three digits when the integer part of the mantissa has more than three digits.

## Before getting started...

$\square$ Modes

- Users should refer to the "User's Guide 2 (Additional Functions)" for information about modes and their selection.
- Pressing the nooe key more than twice displays additional setup screens. Setup screens are described in the sections of this manual where they are actually used to change the calculator setup.
- In this manual, the name of the mode you need to enter in order to perform the calculations being described is indicated in the main title of each section.


## Example:

## Equation Calculations

## CEQN

## Note!

- To return the calculation mode and setup to the initial defaults shown below, press shlfr CLR 2 (Mode) $\boldsymbol{E}$.

Calculation Mode:
Angle Unit:
Exponential Display Format:
Fraction Display Format:
Decimal Point Character: Dot

- Mode indicators appear in the upper part of the display.
- Be sure to check the current calculation mode (SD, REG, COMP) and angle unit setting (Deg, Rad, Gra) before beginning a calculation.


## ■ Input Capacity

- The memory area used for calculation input can hold 79 "steps." One step is taken up each time you press a
 A shiri or anpme key operation does not take up a step, so inputting shlf [8], for example, takes up only one step.
- You can input up to 79 steps for a single calculation. Whenever you input the 73rd step of any calculation, the cursor changes from "_" to "■" to let you know memory is running low. If you need to input more than 79 steps, you should divide your calculation into two or more parts.
- Pressing the Ans key recalls the last result obtained, which you can use in a subsequent calculation. See "Answer Memory" for more information about using the Ans key.


## ■ Making Corrections During Input

- Use $\measuredangle$ and to move the cursor to the location you want.
- Press [0L to delete the number or function at the current cursor position.
 something while the insert cursor is on the display inserts the input at the insert cursor position.
- Pressing sulf ins, or $\boldsymbol{E}$ returns to the normal cursor from the insert cursor.


## ■ Replay Function

- Every time you perform a calculation, the replay function stores the calculation formula and its result in replay memory. Pressing the $\Delta$ key displays the formula and result of the calculation you last performed. Pressing $\Delta$ again back steps sequentially (new-to-old) through past calculations.
- Pressing the $\triangle$ or key while a replay memory calculation is on the display changes to the editing screen.
- Pressing the $\triangle$ or key immediately after you finish a calculation displays the editing screen for that calculation.
- Pressing AC does not clear replay memory, so you can recall the last calculation even after you press AC.
- Replay memory capacity is 128 bytes for storage of both expressions and results.
- Replay memory is cleared by any of the following actions.
When you press the ON key
When you initialize modes and settings by pressing suntio CLR 2 (or 3) $\boldsymbol{E}$.
When you change from one calculation mode to another When you turn off the calculator.


## $\square$ Error Locator

- Pressing $\square$ or $\measuredangle$ after an error occurs displays the calculation with the cursor positioned at the location where the error occurred.


## ■ Multi-statements

A multi-statement is an expression that is made up of two or more smaller expressions, which are joined using a colon (: ).

- Example: To add $2+3$ and then multiply the result by 4



## ■ Exponential Display Formats

This calculator can display up to 10 digits. Larger values are automatically displayed using exponential notation. In the case of decimal values, you can select between two formats that determine at what point exponential notation is used.

- To change the exponential display format, press the mooe key a number of times until you reach the exponential display format setup screen shown below.

- Press 3 . On the format selection screen that appears, press 1 to select Norm 1 or 2 for Norm 2.


## - Norm 1

With Norm 1, exponential notation is automatically used for integer values with more than 10 digits and decimal values with more than two decimal places.

## - Norm 2

With Norm 2, exponential notation is automatically used for integer values with more than 10 digits and decimal values with more than nine decimal places.

- All of the examples in this manual show calculation results using the Norm 1 format.


## $\square$ Decimal Point and Separator Symbols

You can use the display setup (Disp) screen to specify the symbols you want for the decimal point and 3-digit separator.

- To change the decimal point and separator symbol setting, press the mooe key a number of times until you reach the setup screen shown below.

```
Disp
1
```

- Display the selection screen.
fx-95MS:
Other Models: $1 \square \square$
- Press the number key ( 1 or 2) that corresponds to the setting you want to use.

1 (Dot): Period decimal point, comma separator
2 (Comma): Comma decimal point, period separator

## - Initializing the Calculator

- Perform the following key operation when you want to initialize the calculation mode and setup, and clear replay memory and variables.
SHATI CLR 3 (AII) $\boldsymbol{=}$


## Basic Calculations

## - Arithmetic Calculations

> Use the mooe key to enter the COMP Mode when you want to perform basic calculations. COMP ................................................................00 1

- Negative values inside of calculations must be enclosed within parentheses.
$\sin -1.23 \rightarrow$ sin $(\mathbb{O} 1.23 \square$
- It is not necessary to enclose a negative exponent within parentheses.

$$
\sin 2.34 \times 10^{-5} \rightarrow \sin 2.34 \text { EXP }(-) 5
$$

- Example 1: $3 \times\left(5 \times 10^{-9}\right)=1.5 \times 10^{-8}$

$$
3 \boldsymbol{x} 5 \text { EXP } 9 \boldsymbol{=}
$$

- Example 2: $5 \times(9+7)=805 \times 19+7 \square \mathbf{x}$
- You can skip all $\square$ operations before $\boldsymbol{E}$.


## ■ Fraction Operations <br> - Fraction Calculations

- Values are displayed in decimal format automatically whenever the total number of digits of a fractional value (integer + numerator + denominator + separator marks) exceeds 10.
- Example 1: $\frac{2}{3}+\frac{1}{5}=\frac{13}{15}$

- Example 2: $3 \frac{1}{4}+1 \frac{2}{3}=4 \frac{11}{12}$

$$
\begin{aligned}
& 3 a^{0} 1 \times a^{0} 4+
\end{aligned}
$$

- Example 3: $\frac{2}{4}=\frac{1}{2}$

2 ab/ 4 =

- Example 4: $\frac{1}{2}+1.6=2.1$ $1 a^{\square} 2+1.6 \boldsymbol{\square}$
- Results of calculations that mix fraction and decimal values are always decimal.


## - Decimal $\leftrightarrow$ Fraction Conversion

- Use the operation shown below to convert calculation results between decimal values and fraction values.
- Note that conversion can take as long as two seconds to perform.
- Example 1: $2.75=2 \frac{3}{4}$ (Decimal $\rightarrow$ Fraction)

$$
\begin{aligned}
& 2.75=2.75 \\
& \text { ab } \\
& \left.\left.=\frac{11}{4} \text { (sㅐTF } \mathrm{d} / \mathrm{c}\right) \quad 11\right\lrcorner 4 \text {. }
\end{aligned}
$$

- Example 2: $\frac{1}{2} \leftrightarrow 0.5$ (Fraction $\leftrightarrow$ Decimal)

- Mixed Fraction $\leftrightarrow$ Improper Fraction Conversion
- Example: $1 \frac{2}{3} \leftrightarrow \frac{5}{3}$

- You can use the display setup (Disp) screen to specify the display format when a fraction calculation result is greater than one.
- To change the fraction display format, press the nooe key a number of times until you reach the setup screen shown below.

$$
\underset{1}{\text { Disp }}
$$

- Display the selection screen.
fx-95MS:
1
Other Models:
$1 \square$
- Press the number key ( $\sqrt{ }$ or 2 ) that corresponds to the setting you want to use.
$1(\mathrm{a} / \mathrm{c})$ : Mixed fraction 2 (d/c): Improper fraction
- An error occurs if you try to input a mixed fraction while the $\mathrm{d} / \mathrm{c}$ display format is selected.


## - Percentage Calculations

- Example 1: To calculate 12\% of 1500 (180)

$$
1500 \times 12 \text { 쌔N \% }
$$

- Example 2: To calculate what percentage of 880 is 660
(75\%)
660 ٪ 880 애낙 \%
- Example 3: To add 15\% onto 2500 (2875)

$$
2500 \times 15 \text { 쌔N } \%+
$$

- Example 4: To discount 3500 by $25 \%$ (2625)

$$
3500 \times 25 \text { 패파 \% }
$$

- Example 5: To discount the sum of 168,98 , and 734 by 20\%

| $168 \pm 98 \pm 734 \boldsymbol{\pm}$ Ans shrir sio A |
| :---: |
|  |
|  |

* As shown here, if you want to use the current Answer Memory value in a mark up or discount calculation, you need to assign the Answer Memory value into a variable and then use the variable in the mark up/discount calculation. This is because the calculation performed when \% is pressed stores a result to Answer Memory before the - key is pressed.
- Example 6: If 300 grams are added to a test sample originally weighing 500 grams, what is the percentage increase in weight?
- Example 7: What is the percentage change when a value is increased from 40 to 46 ? How about to 48 ?
(15\%, 20\%)


## ■ Degrees, Minutes, Seconds Calculations

- You can perform sexagesimal calculations using degrees (hours), minutes, and seconds, and convert between sexagesimal and decimal values.
- Example 1: To convert the decimal value 2.258 to a sexagesimal value and then back to a decimal value

- Example 2: To perform the following calculation:
$12^{\circ} 34^{\prime} 56^{\prime \prime} \times 3.45$
$12 \cdots 34 \div 56 \times 3.45=43^{\circ} 24^{\circ} 31.2$


## ■ FIX, SCI, RND

- To change the settings for the number of decimal places, the number of significant digits, or the exponential display format, press the noob key a number of times until you reach the setup screen shown below.

- Press the number key ( $\mathbf{1 , 2}, 2$, or 3 ) that corresponds to the setup item you want to change.
1 (Fix): Number of decimal places
2 (Sci): Number of significant digits
3 (Norm): Exponential display format
- Example 1: $200 \div 7 \times 14=$


| $200 \div 7 \boldsymbol{=}$ | 28.571 |
| :---: | :---: |
| $x 14=$ | 400.000 |

The following performs the same calculation using the specified number of decimal places.

| 200 ¢ 7 = | 28.571 |
| :---: | :---: |
| SHHFI Bnd | 28.571 |
| x $14=$ | 399.994 |

- Press nooe $\cdot$.... 3 (Norm) 1 to clear the Fix specification.
- Example 2: $1 \div 3$, displaying result with two significant digits (Sci 2)

- Press mooe … 3 (Norm) 1 to clear the Sci specification.


## Memory Calculations COMP

Use the moos key to enter the COMP Mode when you want to perform a calculation using memory.
COMP
1 moon 1

## ■ Answer Memory

- Whenever you press E after inputting values or an expression, the calculated result automatically updates Answer Memory contents by storing the result.
- In addition to $\boldsymbol{E}$, Answer Memory contents are also up-
 $\mathrm{M}-$, or sHIff sio followed by a letter (A through F, or M, X, or Y ).
- You can recall Answer Memory contents by pressing Ans.
- Answer Memory can store up to 12 digits for the mantissa and two digits for the exponent.
- Answer Memory contents are not updated if the operation performed by any of the above key operations results in an error.


## ■ Consecutive Calculations

- You can use the calculation result that is currently on the display (and also stored in Answer Memory) as the first value of your next calculation. Note that pressing an operator key while a result is displayed causes the displayed value to change to Ans, indicating it is the value that is currently stored in Answer Memory.
- The result of a calculation can also be used with a subsequent Type A function ( $x^{2}, x^{3}, x^{-1}, x!$ DRG $),+,-$ $\wedge\left(x^{y}\right), \sqrt[x]{ }, \times, \div, n \mathrm{Pr}$ and $n \mathrm{Cr}$.


## $\square$ Independent Memory

- Values can be input directly into memory, added to memory, or subtracted from memory. Independent memory is convenient for calculating cumulative totals.
- Independent memory uses the same memory area as variable M.
- To clear independent memory (M), input 0 suntr sT0 M (M+).
- Example:

| $23+9=32$ | 23 + 9 SHITF ST0 M ( $\mathrm{M}^{\text {S }}$ ) |
| :---: | :---: |
| $53-6=47$ |  |
| -) $45 \times 2=90$ | $45 \times 2$ shlfi m- |
| (Total) -11 | (RCL M ( $\mathrm{M}+$ ) |

## Variables

- There are nine variables (A through F, M, X and Y), which can be used to store data, constants, results, and other values.
- Use the following operation to delete data assigned to a
particular variable: 0 Sntro ST0 A. This operation deletes the data assigned to variable A.
- Perform the following key operation when you want to clear the values assigned to all of the variables.
SHHFITCLR (Mcl) $\boldsymbol{=}$
- Example: $193.2 \div 23=8.4$

$$
193.2 \div 28=6.9
$$

193.2 대NF STO A $\div 23 \boldsymbol{=}$ 싸ㅆㅐㅐ $\div 28=$

## Scientific Function Calculations

## COMP)

Use the ㄸoos key to enter the COMP Mode when you want to perform basic arithmetic calculations. COMP nooe 1

- Certain types of calculations may take a long time to complete.
- Wait for the result to appear on the display before starting the next calculation.
- $\pi=3.14159265359$


## ■ Trigonometric/Inverse Trigonometric Functions

- To change the default angle unit (degrees, radians, grads), press the moog key a number of times until you reach the angle unit setup screen shown below.

$$
\begin{aligned}
& \text { Deg Rad Gra } \\
& 2
\end{aligned}
$$

- Press the number key ( 1,2 , or 3 ) that corresponds to the angle unit you want to use.
$\left(90^{\circ}=\frac{\pi}{2}\right.$ radians $=100$ grads $)$
- Example 1: $\sin 63^{\circ} 52^{\prime} 41^{\prime \prime}=\mathbf{0 . 8 9 7 8 5 9 0 1 2}$
- Example 2: $\cos \left(\frac{\pi}{3} \mathrm{rad}\right)=0.5$
moob …… 2 (Rad)

- Example 3: $\cos ^{-1} \frac{\sqrt{2}}{2}=0.25 \pi(\mathrm{rad})\left(=\frac{\pi}{4}(\mathrm{rad})\right)$

$$
\text { moot } \cdots \cdots \text { (Rad) }
$$

- Example 4: $\tan ^{-1} 0.741=36.53844577^{\circ}$
(mooe …… 1 (Deg)
(shntiv


## ■ Hyperbolic/Inverse Hyperbolic Functions

- Example 1: $\sinh 3.6=18.28545536$ hyp $\sin 3.6 \boldsymbol{\#}$
- Example 2: $\sinh ^{-1} 30=4.094622224$
hyp shlf sin' $30 \boldsymbol{E}$


## ■ Common and Natural Logarithms/ Antilogarithms

- Example 1: $\log 1.23=0.089905111$
$\log 1.23=$
- Example 2: $\ln 90\left(=\log _{\mathrm{e}} 90\right)=4.49980967$
[1n $90=$

$$
\ln e=1
$$

- Example 3: $e^{10}=22026.46579$
- Example 4: $10^{1.5}=31.6227766$
- Example 5: $2^{4}=16$
(In) 毛阴 $e$
sㅐㄱㅏ $e^{x} 10=$
(s)Nㅏㄱ $10^{x} 1.5 \boldsymbol{=}$
$2 \boldsymbol{1} 4=$

$$
\begin{aligned}
& \text { moob …․ } 1 \text { (Deg) } \\
& \sin 63 \cdots 52 \cdots 41 \cdots \text { ㅌ }
\end{aligned}
$$

# ■ Square Roots, Cube Roots, Roots, Squares, Cubes, Reciprocals, <br> Factorials, Random Numbers, $\pi$, and Permutation/Combination 

- Example 1: $\sqrt{2}+\sqrt{3} \times \sqrt{5}=5.287196909$

$$
\left.\nabla_{2} \boldsymbol{+}\right)_{3} \boldsymbol{x} \boldsymbol{\theta}
$$

- Example 2: $\sqrt[3]{5}+\sqrt[3]{-27}=-1.290024053$
- Example 3: $\sqrt[7]{123}\left(=123^{\frac{1}{7}}\right)=1.988647795$
- Example 4: $123+30^{2}=1023 \quad 123 \boldsymbol{+} \times x^{2} \boldsymbol{E}$
- Example 5: $12^{3}=1728$
- Example 6: $\frac{1}{\frac{1}{3}-\frac{1}{4}}=\mathbf{1 2}$

$$
13 x-4 x \square \square
$$

- Example 7: 8! = 40320

|  |
| :---: |

- Example 8: To generate a random number between 0.000 and 0.999

(The above value is a sample only. Results differ each time.)
- Example 9: $3 \pi=9.424777961$

3 쌔교 $\pi$

- Example 10: To determine how many different 4 -digit values can be produced using the numbers 1 through 7 - Numbers cannot be duplicated within the same 4-digit value (1234 is allowed, but 1123 is not).
(840)
- Example 11: To determine how many different 4-member groups can be organized in a group of 10 individuals


## $\square$ Angle Unit Conversion

- Press 5 Hiff

- Pressing 1, 2, or 3 converts the displayed value to the corresponding angle unit.
- Example: To convert 4.25 radians to degrees

$\square$ Coordinate Conversion (Pol (x,y), $\operatorname{Rec}(r, \theta)$ )
- Calculation results are automatically assigned to variables E and F.
- Example 1: To convert polar coordinates ( $r=2, \theta=60^{\circ}$ ) to rectangular coordinates $(x, y)$ (Deg)
$x=1$
$y=1.732050808$

| (SHAFI Rec) $2,60 \square \boldsymbol{\square}$ |
| :---: |
| (1CL F |

- Press © $E$ to display the value of $x$, or $\mathbb{R C D}$ to display the value of $y$.
- Example 2: To convert rectangular coordinates $(1, \sqrt{3})$ to polar coordinates $(r, \theta)$ (Rad)
$r=\mathbf{2}$

$\theta=1.047197551$
- Press ECL E to display the value of $r$, or $\operatorname{BCD}$ to display the value of $\theta$.


## ■ Engineering Notation Calculations

- Example 1: To convert 56,088 meters to kilometers
$\rightarrow 56.088 \times 10^{3}$
- Example 2: To convert 0.08125 grams to milligrams
$\rightarrow 81.25 \times 10^{-3}$
0.08125 E $\boldsymbol{E N G}^{2}$ (mg)


## Equation Galculations



The EQN Mode lets you solve equations up to three degrees and simultaneous linear equations with up to three unknowns.

Use the ${ }^{\text {mooe }}$ key to enter the EQN Mode when you want to solve an equation.
EQN $\qquad$ MODE MODE MODE 1

## ■ Quadratic and Cubic Equations

Quadratic Equation: $a x^{2}+b x+c=0$
Cubic Equation: $a x^{3}+b x^{2}+c x+d=0$
Entering the EQN Mode and pressing $\square$ displays the initial quadratic/cubic equation screen.

$$
\begin{gathered}
\text { +Degree? } \\
2
\end{gathered}
$$

Use this screen to specify 2 (quadratic) or 3 (cubic) as the degree of the equation, and input values for each of the coefficients.


- Any time until you input a value for the final coefficient ( $c$ for a quadratic equation, $d$ for a cubic equation), you can use the $\triangle$ and $\nabla$ keys to move between coefficients on the screen and make changes, if you want.
- Note that you cannot input complex numbers for coefficients.

Calculation starts and one of the solutions appears as soon as you input a value for the final coefficient.


Press the $\nabla$ key to view other solutions. Use $\triangle$ and $\nabla$ to scroll between all of the solutions for the equation.
Pressing the $\mathbf{A C}$ key at this point returns to the coefficient input screen.

- Certain coefficients can cause calculation to take more time.
- Example 1: To solve the equation

$$
x^{3}-2 x^{2}-x+2=0 \quad(x=2,-1,1)
$$

(Degree?) 3

| $(a ?)$ | $1 \boldsymbol{=}$ |
| :--- | :--- |
| $(b ?)$ | $(-1) 2 \boldsymbol{\Xi}$ |
| $(c ?)$ | $(-1)=$ |
| $(d ?)$ | $2 \boldsymbol{\Xi}$ |
| $(x 1=2)$ | $\nabla$ |
| $(x 2=-1)$ | $\nabla$ |
| $(x 3=1)$ |  |

- If a result is a complex number, the real part of the first solution appears first. This is indicated by the " $R \leftrightarrow I$ " symbol on the display. Press suntr Re-lm to toggle the display between the real part and imaginary part of a solution.

- Example 2: To solve the equation

$$
8 x^{2}-4 x+5=0 \quad(x=0.25 \pm 0.75 i)
$$

(Degree?)
(a?)
(c?)
$(x 1=0.25+0.75 i)$
$(x 2=0.25-0.75 i)$

## $\square$ Simultaneous Equations

Simultaneous Linear Equations with Two Unknowns:

$$
\begin{aligned}
& a_{1} x+b_{1} y=c_{1} \\
& a_{2} x+b_{2} y=c_{2}
\end{aligned}
$$

Simultaneous Linear Equations with Three Unknowns:

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z=d_{1} \\
& a_{2} x+b_{2} y+c_{2} z=d_{2} \\
& a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{aligned}
$$

Entering the EQN Mode displays the initial simultaneous equation screen.


Use this screen to specify 2 or 3 as the number of unknowns, and input values for each of the coefficients.
Coefficient name


Arrow indicates direction you should scroll to view other elements.

- Any time until you input a value for the final coefficient ( $c_{2}$ for two unknowns, $d_{3}$ for three unknowns), you can use the $\triangle$ and $\nabla$ keys to move between coefficients on the screen and make changes, if you want.
- Note that you cannot input complex numbers for coefficients.

Calculation starts and one of the solutions appears as soon as you input a value for the final coefficient.


Press the $\nabla$ key to view other solutions. Use $\Delta$ and $\nabla$ to scroll between all of the solutions for the equation. Pressing the $\mathbf{A C}$ key at this point returns to the coefficient input screen.

- Example: To solve the following simultaneous equations

$$
\begin{aligned}
& 2 x+3 y-z=15 \\
& 3 x-2 y+2 z=4 \\
& 5 x+3 y-4 z=9 \quad(x=2, y=5, z=4)
\end{aligned}
$$

(Unknowns?)
( $a_{1}$ ?) ....... ( $d_{1}$ ?)
( $a_{2}$ ?) ....... ( $d_{2}$ ?)
( $a_{3}$ ?) ....... ( $d_{3}$ ?)
( $x=2$ )
$(y=5)$
$(z=4)$

## Statistical Calculations

## Standard Deviation

Use the moog key to enter the SD Mode when you want to perform statistical calculations using standard deviation.

SD

$$
\text { nooe moog } 1
$$

- Always start data input with SHIFI CLR $\mathbf{1}$ (Scl) $\boldsymbol{E}$ to clear statistical memory.
- Input data using the key sequence shown below.
<x-data> DT
- Input data is used to calculate values for $n, \Sigma x, \Sigma x^{2}, \bar{x}$, $\sigma_{n}$ and $\sigma_{n-1}$, which you can recall using the key operations noted nearby.

| To recall this type of value: | Perform this key operation: |
| :---: | :---: |
| $\Sigma x^{2}$ | shllfir s.sum 1 |
| $\Sigma x$ | (shlif 5.5 Sum 2 |
| $n$ | shntir 5 s.Sum 3 |
| $\bar{x}$ | SHHIFI s-VAR 1 |
| $\sigma$, | (shlif s-VAR 2 |
| $\sigma n-1$ | SHIFT s-VaR 3 |

- Example: To calculate $\sigma_{n-1}, \sigma n, \bar{x}, n, \Sigma x$, and $\Sigma x^{2}$ for the following data : 55, 54, 51, 55, 53, 53, 54, 52

In the SD Mode:
shili cli 1 ( Sc ) $\boldsymbol{E}$ (Stat clear)


Each time you press DT to register your input, the number of data input up to that point is indicated on the display ( $n$ value).

$$
5 4 \longdiv { D T } 5 1 \boxed { D T } 5 5 \longdiv { D T }
$$

$$
53 \boxed{D T} 54 \sqrt{D T} 52 \sqrt{D T}
$$

Number of Data $(n)=8$
Sum of Values $(\Sigma x)=427$
Sum of Squares of Values $\left(\Sigma x^{2}\right)=22805$


## Data Input Precautions

- $\triangle T$ IT inputs the same data twice.
- You can also input multiple entries of the same data using shlif ; To input the data 110 ten times, for example, press 110 배NT ; 10 DT.
- You can perform the above key operations in any order, and not necessarily that shown above.
- While inputting data or after inputting data is complete, you can use the $\boldsymbol{\Delta}$ and $\nabla$ keys to scroll through data you have input. If you input multiple entries of the same data using shlf ; to specify the data frequency (number of data items) as described above, scrolling through data shows both the data item and a separate screen for the data frequency (Freq).
- You can then edit the displayed data, if you want. Input the new value and then press the $\boldsymbol{F}$ key to replace the old value with the new one. This also means that if you want to perform some other operation (calculation, recall of statistical calculation results, etc.), you should always press the $\mathbf{A C}$ key first to exit data display.
- Pressing the $\mathbb{D T}$ key instead of $\boldsymbol{E}$ after changing a value on the display registers the value you input as a new data item, and leaves the old value as it is.
- You can delete a data value displayed using $\Delta$ and $\nabla$ by pressing sunt CD. Deleting a data value causes all values following it to be shifted up.
- Data values you register are normally stored in calculator memory. The message "Data Full" appears and you will not be able to input any more data if there is no memory left for data storage. If this happens, press the E key to display the screen shown below.


Press 2 to exit data input without registering the value you just input.
Press 1 if you want to register the value you just input, without saving it in memory. If you do this, however, you will not be able to display or edit any of the data you have input.

- To delete data you have just input, press $\operatorname{sHnfr}$ CL.
- After inputting statistical data in the SD Mode or REG Mode, you will be unable to display or edit individual data items any longer after perform either the following operations.
Changing to another mode
Changing the regression type (Lin, Log, Exp, Pwr, Inv, Quad)


## |Regression Calculations

REG

Use the 1000 E key to enter the REG Mode when you want to perform statistical calculations using regression. REG $\qquad$ noos 1 noos 2

- Entering the REG Mode displays screens like the ones shown below.

- Press the number key ( 1,2 , or 3 ) that corresponds to the type of regression you want to use.

1 (Lin): Linear regression
2 (Log): Logarithmic regression
3 (Exp): Exponential regression
1 (Pwr): Power regression
$\square 2$ (Inv): Inverse regression

- 3 (Quad): Quadratic regression
- Always start data input with shntr $\mathbb{C L R}$ (Scl) $\boldsymbol{\mp}$ to clear statistical memory.
- Input data using the key sequence shown below. <x-data>,$<y$-data> DT
- The values produced by a regression calculation depend on the values input, and results can be recalled using the key operations shown in the table below.

| To recall this type of value: | Perform this key operation: |
| :---: | :---: |
| $\Sigma x^{2}$ | SHHIT S.Sum 1 |
| $\Sigma x$ | SsHIT s.sum 2 |
| $n$ | 5sHIT S.sum 3 |
| $\Sigma y^{2}$ | SHIF S.SUM 1 |
| $\Sigma y$ | smint s Sum $\triangle 2$ |
| $\Sigma x y$ |  |
| $\bar{x}$ | SHIFT S-VAA 1 |
| $x \sigma_{n}$ | SHIFT S SVAA 2 |
| $x \sigma_{n-1}$ | (5HIF STVAR 3 |
| y | (5HHF (S.VAR $\triangle 1$ |
| $y \sigma_{n}$ | SHHF S.VAR $\triangle 2$ |
| $y \sigma_{n-1}$ | SHITI S-VAR ${ }^{\text {S }}$ |
| Regression coefficient A | SHIFT S.VAA $\triangle \square 1$ |
| Regression coefficient B | SHIFT S-VAR $\triangle \square$ |
| Regression calculation other than quadratic regression |  |
| Correlation coefficient $r$ | (5HFT S-VAR $\triangle>$ |
| $\hat{\chi}$ | SHIIT S-VAR $\triangle \triangle \square 1$ |
| $\hat{y}$ | SHIIf S-VAR $\triangle \square \square 2$ |

- The following table shows the key operations you should use to recall results in the case of quadratic regression.

| To recall this type of value: | Perform this key operation: |
| :---: | :---: |
| $\Sigma x^{3}$ | shlli s s.sum $\triangle \square \square$ |
| $\Sigma x^{2} y$ | shllit s.sum $\triangle \square \pm 2$ |
| $\Sigma x^{4}$ | 5sllf ss.sum $\triangle \square \square$ |
| Regression coefficient C | SHITIT S-VAR $\triangle \square$ |
| $\hat{x}_{1}$ | SHIIT S-VAR $\triangle \square \square 1$ |
| $\hat{x}_{2}$ | sshlif s-Van $\triangle \square \square 2$ |
| $\hat{y}$ | SHHIF S-VAR $\triangle \square \square 3$ |

- The values in the above tables can be used inside of expressions the same way you use variables.


## - Linear Regression

- The regression formula for linear regression is: $y=\mathrm{A}+\mathrm{B} x$.
- Example: Atmospheric Pressure vs. Temperature

| Temperature | Atmospheric <br> Pressure |
| :---: | :---: |
| $10^{\circ} \mathrm{C}$ | 1003 hPa |
| $15^{\circ} \mathrm{C}$ | 1005 hPa |
| $20^{\circ} \mathrm{C}$ | 1010 hPa |
| $25^{\circ} \mathrm{C}$ | 1011 hPa |
| $30^{\circ} \mathrm{C}$ | 1014 hPa |

Perform linear regression to determine the regression formula terms and correlation coefficient for the data nearby. Next, use the regression formula to estimate atmospheric pressure at $18^{\circ} \mathrm{C}$ and temperature at 1000 hPa . $\mathrm{Fi}-$ nally, calculate the coefficient of determination $\left(r^{2}\right)$ and sample covariance $\left(\frac{\sum x y-n \cdot \bar{x} \cdot \bar{y}}{n-1}\right)$.

In the REG Mode:

sㅐㄱ CLR 1 (Scl) $\boldsymbol{E}$ (Stat clear)


Each time you press DT to register your input, the number of data input up to that point is indicated on the display ( $n$ value).

|  | $15 \square 1005$ DT |
| :---: | :---: |
| $2 0 \longdiv { 1 0 1 0 \triangle }$ | $25 \square 1011$ DT |
|  | $30 \square 1014$ DT |

Regression Coefficient $\mathrm{A}=997.4$
Regression Coefficient $\mathrm{B}=\mathbf{0 . 5 6}$


Correlation Coefficient $r=0.982607368$


Atmospheric Pressure at $18^{\circ} \mathrm{C}=1007.48$

Coefficient of Determination $=\mathbf{0 . 9 6 5 5 1 7 2 4 1}$


- Logarithmic, Exponential, Power, and Inverse Regression
- Use the same key operations as linear regression to recall results for these types of regression.
- The following shows the regression formulas for each type of regression.

| Logarithmic Regression | $y=\mathrm{A}+\mathrm{B} \cdot \ln x$ |
| :--- | :--- |
| Exponential Regression | $y=\mathrm{A} \cdot e^{\mathrm{B} \cdot x}(\ln y=\ln \mathrm{A}+\mathrm{B} x)$ |
| Power Regression | $y=\mathrm{A} \cdot x^{\mathrm{B}}(\ln y=\ln \mathrm{A}+\mathrm{B} \ln x)$ |
| Inverse Regression | $y=\mathrm{A}+\mathrm{B} \cdot 1 / x$ |

## - Quadratic Regression

- The regression formula for quadratic regression is: $y=\mathrm{A}+\mathrm{B} x+\mathrm{C} x^{2}$.


## - Example:

| $x_{i}$ | $y_{i}$ |
| ---: | ---: |
| 29 | 1.6 |
| 50 | 23.5 |
| 74 | 38.0 |
| 103 | 46.4 |
| 118 | 48.0 |

Perform quadratic regression to determine the regression formula terms for the data nearby. Next, use the regression formula to estimate the values for $\hat{y}$ (estimated value of $y$ ) for $x_{i}=16$ and $\hat{x}$ (estimated value of $x$ ) for $y_{i}=20$.

In the REG Mode:

- 3 (Quad)

SHIFI CLR 1 (Scl) $\boldsymbol{m}$ (Stat clear)

$$
\begin{aligned}
& 29 \text { • } 1.6 \text { (DT } 50 \text {, } 23.5 \text { (DT } \\
& 7 4 \longdiv { \square } 3 8 . 0 \text { ■T } 103 \square 46.4 \text { ■T } \\
& 118 \square 48.0 \text { DT }
\end{aligned}
$$



Regression Coefficient $\mathrm{C}=-\mathbf{6 . 7 1 6 2 9 6 6 7} \times 10^{-3}$


## Data Input Precautions

- DT DT inputs the same data twice.
- You can also input multiple entries of the same data using shlf $;$. To input the data "20 and 30" five times, for example, press $20 \square 30$ SHIFT 55 DT.
- The above results can be obtained in any order, and not necessarily that shown above.
- Precautions when editing data input for standard deviation also apply for regression calculations.


## Technical Information

## $\square$ When you have a problem

If calculation results are not what you expect or if an error occurs, perform the following steps.

1. Press SHHFT CLR 2 (Mode) $\boldsymbol{E}$ to initialize all modes and settings.
2. Check the formula you are working with to confirm it is correct.
3. Enter the correct mode and try performing the calculation again.
If the above steps do not correct the problem, press the ON key. The calculator performs a self-check operation and deletes all data stored in memory if any abnormality is detected. Make sure you always keep written copies of all important data.

## ■ Error Messages

The calculator is locked up while an error message is on
the display. Press $\mathbb{A C}$ to clear the error, or press $\triangle$ or $\square$ to display the calculation and correct the problem. See "Error Locator" for details.

## Math ERROR

## - Causes

- Calculation result is outside the allowable calculation range.
- An attempt to perform a function calculation using a value that exceeds the allowable input range.
- An attempt to perform an illogical operation (division by zero, etc.)


## - Action

- Check your input values and make sure they are all within the allowable ranges. Pay special attention to values in any memory areas you are using.


## Stack ERROR

- Cause
- The capacity of the numeric stack or operator stack is exceeded.


## - Action

- Simplify the calculation. The numeric stack has 10 levels and the operator stack has 24 levels.
- Divide your calculation into two or more separate parts.


## Syntax ERROR

- Cause
- An attempt to perform an illegal mathematical operation.


## - Action

- Press $\qquad$ or to display the calculation with the cursor located at the location of the error and make required corrections.


## Arg ERROR

- Cause
- Improper use of an argument


## - Action

- Press $\triangle$ or to display the location of the cause of the error and make required corrections.


## ■ Order of Operations

Calculations are performed in the following order of precedence.
(1) Coordinate transformation: $\operatorname{Pol}(x, y), \operatorname{Rec}(r, \theta)$

Differentials: $d / d x^{*}$
Integrations: $\int d x^{*}$
Normal distribution: $\mathrm{P}\left({ }^{*}, \mathrm{Q}\right.$ ( $^{*}, \mathrm{R}\left({ }^{*}\right.$
(2) Type A functions:

With these functions, the value is entered and then the function key is pressed.
$x^{3}, x^{2}, x^{-1}, x!, \circ$, "
Engineering symbols*
Normal distribution: $\rightarrow t^{*}$
$\hat{x}, \hat{x}_{1}, \hat{x}_{2}, \hat{y}$
Angle unit conversions (DRG
Metric conversions**
(3) Powers and roots: $\wedge\left(x^{y}\right), x^{-}$
(4) $a^{b} / c$
(5) Abbreviated multiplication format in front of $\pi, e$ (natural logarithm base), memory name, or variable name: $2 \pi, 3 e, 5 \mathrm{~A}, \pi \mathrm{~A}$, etc.
(6) Type B functions:

With these functions, the function key is pressed and then the value is entered.
$\sqrt{ }, \sqrt[3]{ }, \log , \operatorname{In}, e^{x}, 10^{x}, \sin , \cos$, tan, $\sin ^{-1}, \cos ^{-1}$, $\tan ^{-1}$, sinh, cosh, tanh, sinh ${ }^{-1}, \cosh ^{-1}, \tanh ^{-1},(-)$ $\mathrm{d}^{*}, \mathrm{~h}^{*}, \mathrm{~b}^{*}, \mathrm{o}^{*}$, Neg $^{*}$, Not $^{*}$, Det$^{* *}$, Trn $^{* *}$, arg $^{*}$, Abs $^{*}$, Conjg ${ }^{*}$
(7) Abbreviated multiplication format in front of Type B functions: $2 \sqrt{3}$, Alog2, etc.
(8) Permutation and combination: $n \mathrm{Pr}, n \mathrm{Cr}$
$L^{*}$
(9) Dot (.)**
(10) $\times, \div$
(11),+ -
(12) and*
(13) $\mathrm{xnor}{ }^{*}$, xor $^{*}$, or*

- Operations of the same precedence are performed from right to left. $e^{x} \ln \sqrt{ } 120 \rightarrow e^{x}\{\ln (\sqrt{ } 120)\}$
- Other operations are performed from left to right.
- Operations enclosed in parentheses are performed first.
- When a calculation contains an argument that is a negative number, the negative number must be enclosed within parentheses. The negative sign (-) is treated as a Type B function, so particular care is required when the calculation includes a high-priority Type A function, or power or root operations.

Example: $(-2)^{4}=16$

$$
-2^{4}=-16
$$

## ■ Stacks

This calculator uses memory areas, called "stacks," to temporarily store values (numeric stack) and commands (command stack) according to their precedence during calculations. The numeric stack has 10 levels and the command stack has 24 levels. A stack error (Stack ERROR) occurs whenever you try to perform a calculation that is so complex that the capacity of a stack is exceeded.

- Matrix calculations use up to two levels of the matrix stack. Squaring a matrix, cubing a matrix, or inverting a matrix uses one stack level.


## - Example:



Numeric Stack
Command Stack

| $(1)$ | 2 |
| :---: | :---: |
| $(2)$ | 3 |
| $(3)$ | 4 |
| $(4)$ | 5 |
| $(5)$ | 4 |
| $\vdots$ |  |


| 1 | $\times$ |
| :---: | :---: |
| 2 | $($ |
| 3 | $($ |
| 4 | + |
| 5 | $\times$ |
| 6 | $($ |
| 7 | + |
| $\vdots$ |  |

# Mathematical Expression Calculations and Editing Functions 



## ■ Replay Copy

Replay copy lets you recall multiple expressions from replay so they are connected as a multi-statement on the screen.

## - Example:

Replay memory contents:

$$
\begin{aligned}
& 1+1 \\
& 2+2 \\
& 3+3 \\
& 4+4 \\
& 5+5 \\
& 6+6
\end{aligned}
$$

Multi-statement: $4+4: 5+5: 6+6$
Use $\triangle$ and $\nabla$ to display the expression $4+4$.
Press shllf $\Delta$ (COPY).

- You can also edit expressions on the display and perform other multi-statement operations. For more details
about using multi-statements, see "Multi-statements" in the separate "User's Guide."
- Only the expressions in replay memory starting from the currently displayed expression and continuing to the last expression are copied. Anything before the displayed expression is not copied.


## ■ CALC Memory

## COMP (CMPLX)

- CALC memory lets you temporarily store a mathematical expression that you need to perform a number of times using different values. Once you store an expression, you can recall it, input values for its variables, and calculate a result quickly and easily.
- You can store a single mathematical expression, with up to 79 steps. Note that CALC memory can be used in the COMP Mode and CMPLX Mode only.
- The variable input screen shows the values currently assigned to the variables.
- Example: Calculate the result for $\mathrm{Y}=\mathrm{X}^{2}+3 \mathrm{X}-12$ when $\mathrm{X}=7$ (Result: 58), and when $\mathrm{X}=8$ (Result: 76). (Input the function.)

(Store the expression.)
(Input 7 for X ? prompt.)
(Input 8 for X ? prompt.)

- Note that the expression you store is cleared whenever you start another operation, change to another mode, or turn off the calculator.


## ■ SOLVE Function

The SOLVE function lets you solve an expression using variable values you want, without the need to transform or simply the expression.

- Example: C is the time it would take for an object thrown straight up with initial velocity A to reach height B.
Use the formula below to calculate initial velocity A for a height of $B=14$ meters and a time of $C=2$ seconds. Gravitational acceleration is $\mathrm{D}=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
(Result: $\mathrm{A}=16.8$ )
$B=A C-\frac{1}{2} D C^{2}$

(B?)
(A?)
(C?)
(D?)
(A?)

- Since the SOLVE function uses Newton's Method, certain initial values (assumed values) can make it impossible to obtain solutions. In this case, try inputting another value that you assume to be near the solution and perform the calculation again.
- The SOLVE function may be unable to obtain a solution, even though a solution exists.
- Due to certain idiosyncrasies of Newton's method, solutions for the following types of functions tend to be difficult to calculate.
Periodic functions (i.e. $y=\sin x$ )
Functions whose graph produce sharp slopes (i.e. $y=$ $e^{x}, y=1 / x$ )
Discontinuous functions (i.e. $y=\sqrt{x}$ )
- If an expression does not include an equals sign (=), the SOLVE function produces a solution for expression $=0$.


## Scientific Function Calculations

Use the moot key to enter the COMP Mode when you want to perform scientific function calculations.
COMP ........................................................... nooe 1
Inputting Engineering Symbols (COMP) EQN CMPLX)

- Turning on engineering symbols makes it possible for you to use engineering symbols inside your calculations.
- To turn engineering symbols on and off, press the nooe key a number of times until you reach the setup screen shown below.

$$
\frac{\text { Disp }}{1}
$$

- Press 1. On the engineering symbol setting screen that appears, press the number key ( 1 or 2 ) that corresponds to the setting you want to use.

1 (Eng ON): Engineering symbols on (indicated by "Eng" on the display)
2 (Eng OFF): Engineering symbols off (no "Eng" indicator)

- The following are the nine symbols that can be used when engineering symbols are turned on.

| To input this symbol: | Perform this key operation: | Unit |
| :---: | :---: | :---: |
| k (kilo) | SHPIFI $k$ | $10^{3}$ |
| M (Mega) | SHHIFI $M$ | $10^{6}$ |
| G (Giga) | SHHIF G | $10^{9}$ |
| T (Tera) | SHHIFI $T$ | $10^{12}$ |
| m (milli) | SHHIFI $m$ | $10^{-3}$ |
| $\mu$ (micro) | SHITF $\mu$ | $10^{-6}$ |
| n (nano) | SHffr $n$ | $10^{-9}$ |
| p (pico) | SHHIF ${ }^{\text {P }}$ | $10^{-12}$ |
| f (femto) | SHHIF $\ddagger$ | $10^{-15}$ |

- For displayed values, the calculator selects the engineering symbol that makes the numeric part of the value fall within the range of 1 to 1000 .
- Engineering symbols cannot be used when inputting fractions.
- Example: $9 \div 10=0.9 \mathrm{~m}$ (milli)


When engineering symbols are turned on, even standard (non-engineering) calculation results are displayed using engineering symbols.


## Complex Number Calculations

## CMPLX

Use the nooe key to enter the CMPLX Mode when you want to perform calculations that include complex numbers.

CMPLX . moon 2

- The current angle unit setting (Deg, Rad, Gra) affects CMPLX Mode calculations. You can store an expression in CALC memory while in the CMPLX Mode.
- Note that you can use variables A, B, C, and M only in the CMPLX Mode. Variables D, E, F, X, and Y are used by the calculator, which frequently changes their values. You should not use these variables in your expressions.
- The indicator " $R \leftrightarrow \mathrm{I}$ " in the upper right corner of a calculation result display indicates a complex number result. Press $\sqrt{\text { surf re-lm }}$ to toggle the display between the real part and imaginary part of the result.
- You can use the replay function in the CMPLX Mode. Since complex numbers are stored in replay memory in the CMPLX Mode, however, more memory than normal is used up.
- Example: $(2+3 i)+(4+5 i)=6+8 i$
(Real part 6) $2+3$ i + $4 \boldsymbol{+}_{5} \boldsymbol{i}=$
(Imaginary part 8i)


## ■ Absolute Value and Argument Calculation

Supposing the imaginary number expressed by the rectangular form $z=a+b i$ is represented as a point in the Gaussian plane, you can determine the absolute value ( $r$ ) and argument $(\theta)$ of the complex number. The polar form is $r \angle \theta$.

- Example 1: To determine the absolute value ( $r$ ) and argument $(\theta)$ of $3+4 i$ (Angle unit: Deg)

$$
\left(r=5, \theta=53.13010235^{\circ}\right)
$$

Imaginary axis


| ( $r=5$ ) | EsHrf abs $13+4$ i $1 \times$ |
| :---: | :---: |
| ( $\theta=53.13010235{ }^{\circ}$ ) |  |

- The complex number can also be input using the polar form $r \angle \theta$.
- Example 2: $\sqrt{2} \angle 45=1+i$

SHIFT $\mathrm{Re} \rightarrow 1 \mathrm{~m}$


## ■ Rectangular Form $\leftrightarrow$ Polar Form Display

You can use the operation described below to convert a rectangular form complex number to its polar form, and a polar form complex number to its rectangular form. Press (sunf rirelm to toggle the display between the absolute value $(r)$ and argument ( $\theta$ ).

- Example: $1+i \leftrightarrow 1.414213562 \angle 45$


- You select rectangular form $(a+b i)$ or polar form $(r \angle \theta)$ for display of complex number calculation results.
noos … 1 (Disp) $\square$
$1(a+b i)$ : Rectangular form
$2(r \angle \theta)$ : Polar form (indicated by " $r \angle \theta$ " on the display)


## ■ Conjugate of a Complex Number

For any complex number $z$ where $z=a+b i$, its conjugate $(\bar{z})$ is $\bar{z}=a-b i$.

- Example: To determine the conjugate of the complex number $1.23+2.34 i$ (Result: 1.23-2.34i)

SHHFT Conig $11 \bullet \bullet 23+2 \square 34 \rightarrow i=1=$
SHIFT $\mathrm{Re} \rightarrow$ Im

## Base-n Calculations BASE

 want to perform calculations using Base- $n$ values.
BASE ........................................................n00e nooe 3

- In addition to decimal values, calculations can be performed using binary, octal and hexadecimal values.
- You can specify the default number system to be applied to all input and displayed values, and the number system for individual values as you input them.
- You cannot use scientific functions in binary, octal, decimal, and hexadecimal calculations. You cannot input values that include decimal part and an exponent.
- If you input a value that includes a decimal part, the unit automatically cuts off the decimal part.
- Negative binary, octal, and hexadecimal values are produced by taking the two's complement.
- You can use the following logical operators between values in Base- $n$ calculations: and (logical product), or (logical sum), xor (exclusive or), xnor (exclusive nor), Not (bitwise complement), and Neg (negation).
- The following are the allowable ranges for each of the available number systems.

| Binary | $\begin{array}{r} 1000000000 \leqq x \leqq \\ 0 \leqq x \leqq \end{array}$ | $\begin{aligned} & 11111111111 \\ & 0111111111 \end{aligned}$ |
| :---: | :---: | :---: |
| Octal | $4000000000 \leqq x \leqq$ | 777777777 |
|  | $0 \leqq x \leqq$ | 3777777777 |
| Decimal | $-2147483648 \leqq x \leqq$ | 2147483647 |
| Hexadecimal | $80000000 \leqq x \leqq$ | FFFFFFFFF |
|  | $0 \leqq x \leqq$ | 7FFFFFFF |

- Example 1: To perform the following calculation and produce a binary result:
$10111_{2}+11010_{2}=\mathbf{1 1 0 0 0 1}_{2}$
Binary mode:
AC BIN



## $10111+11010=$

- Example 2: To perform the following calculation and produce an octal result:
$7654_{8} \div 12_{10}=516_{8}$
Octal mode:

AC OCT


$$
\begin{aligned}
& \text { LOGIC LOGIC LOGIC } 4 \text { (o) } 7654 \div \\
& \text { LOGIC LOGIC LOGIC } 1 \\
& \hline
\end{aligned} \text { (d) } 12=-1 .
$$

- Example 3: To perform the following calculation and produce a hexadecimal and a decimal result:


Decimal mode:

- Example 4: To convert the value $22_{10}$ to its binary, octal, and hexadecimal equivalents.

$$
\left(10110_{2}, 26_{8}, 16_{16}\right)
$$

Binary mode:


- Example 5: To convert the value $513_{10}$ to its binary equivalent.

Binary mode:

$$
A C B
$$



LLOGIC LOGIC LOGIC 1 (d) $513=$
Math ERROR

- You may not be able to convert a value from a number system whose calculation range is greater than the calculation range of the resulting number system.
- The message "Math ERROR" indicates that the result has too many digits (overflow).


## Statistical Calculations



## Normal Distribution

## SD

Use the moog key to enter the SD Mode when you want to perform a calculation involving normal distribution. SD MOOE MOOE 1

- In the SD Mode and REG Mode, the $\mathbb{M +}$ key operates as the DT key.
- Press shlif IIITR, which produces the screen shown below.
- Input a value from 1 to 4 to select the probability distribution calculation you want to perform.

- Example: To determine the normalized variate $(\rightarrow t)$ for $x=53$ and normal probability distribution $\mathrm{P}(t)$ for the following data: 55, 54, 51, 55, 53, 53, 54, 52

$$
(\rightarrow t=-0.284747398, \mathrm{P}(t)=0.38974)
$$



## Differential Calculations

## COMP

The procedure described below obtains the derivative of a function.

Use the moog key to enter the COMP Mode when you want to perform a calculation involving differentials.
COMP $\qquad$
$\square$

- Three inputs are required for the differential expression: the function of variable $x$, the point (a) at which the differential coefficient is calculated, and the change in $x(\Delta x)$.

$$
\text { suntr } d d d x \text { expression } \square a\lceil\Delta x \square
$$

- Example: To determine the derivative at point $x=2$ for the function $y=3 x^{2}-5 x+2$, when the increase or decrease in $x$ is $\Delta x=2 \times 10^{-4}$ (Result: 7)

$$
\begin{aligned}
& 2 \text { EXP }(-1) 4 \square=
\end{aligned}
$$

- You can omit input of $\Delta x$, if you want. The calculator automatically substitutes an appropriate value for $\Delta x$ if you do not input one.
- Discontinuous points and extreme changes in the value of $x$ can cause inaccurate results and errors.
- Select Rad (Radian) for the angle unit setting when performing trigonometric function differential calculations.


## Integration Galculations

## COMP)

The procedure described below obtains the definite integral of a function.

> Use the nooe key to enter the COMP Mode when you want to perform integration calculations.
> COMP .................................................................. 1

- The following four inputs are required for integration calculations: a function with the variable $x ; a$ and $b$, which define the integration range of the definite integral; and $n$, which is the number of partitions (equivalent to $\mathrm{N}=$ $2^{n}$ ) for integration using Simpson's rule.

$$
\text { (厅dx expression } ๑ a \subseteq b \subseteq n \square \square
$$

- Example: $\int{ }_{1}^{5}\left(2 x^{2}+3 x+8\right) d x=150.6666667$ (Number of partitions $n=6$ )

$$
\begin{aligned}
& 8 \square 1 \square 5 \square 6 \square=
\end{aligned}
$$

## Note!

- You can specify an integer in the range of 1 to 9 as the number of partitions, or you can skip input of the number of partitions entirely, if you want.
- Internal integration calculations may take considerable time to complete.
- Display contents are cleared while an integration calculation is being performed internally.
- Select Rad (Radian) for the angle unit setting when performing trigonometric function integration calculations.


## Matrix Calculations

The procedures in this section describe how to create matrices with up to three rows and three columns, and how to add, subtract, multiply, transpose and invert matrices, and how to obtain the scalar product, determinant, and absolute value of a matrix.

> Use the mook key to enter the MAT Mode when you want to perform matrix calculations.
> MAT noot nooe nooe 2

Note that you must create one or more matrices before you can perform matrix calculations.

- You can have up to three matrices, named A, B, and C, in memory at one time.
- The results of matrix calculations are stored automatically into MatAns memory. You can use the matrix in MatAns memory in subsequent matrix calculations.
- Matrix calculations can use up to two levels of the matrix stack. Squaring a matrix, cubing a matrix, or inverting a matrix uses one stack level. See "Stacks" in the separate "User's Guide" for more information.


## ■ Creating a Matrix

To create a matrix, press sunt mat 1 (Dim), specify a matrix name ( $\mathrm{A}, \mathrm{B}$, or C ), and then specify the dimensions (number of rows and number of columns) of the matrix. Next, follow the prompts that appear to input values that make up the elements of the matrix.


You can use the cursor keys to move about the matrix in order to view or edit its elements.

To exit the matrix screen, press $\mathbf{A C}$.

## $\square$ Editing the Elements of a Matrix

Press shlf mat 2 (Edit) and then specify the name (A, B, or C) of the matrix you want to edit to display a screen for editing the elements of the matrix.

## ■ Matrix Addition, Subtraction, and Multiplication

Use the procedures described below to add, subtract, and multiply matrices.

- Example: To multiply Matrix $A=\left[\begin{array}{rr}1 & 2 \\ 4 & 0 \\ -2 & 5\end{array}\right]$ by

$$
\text { Matrix } B=\left[\begin{array}{rrr}
-1 & 0 & 3 \\
2 & -4 & 1
\end{array}\right] \quad\left(\left[\begin{array}{rrr}
3 & -8 & 5 \\
-4 & 0 & 12 \\
12-20 & -1
\end{array}\right]\right)
$$

(Matrix A 3 $\times 2$ ) sinf mat 1 (Dim) $1(\mathrm{~A}) 3 \boldsymbol{=} \boldsymbol{=}$

| C |
| :---: |

(Matrix B $2 \times 3$ ) SHIFT MAT 1 (Dim) 2 (B) $2 \boldsymbol{E} 3 \boldsymbol{E}$
(Element input)

(MatA×MatB)

$$
\begin{aligned}
& \text { 5HITI MAT } 3 \text { (Mat) } 1 \text { (A) } x \\
& \text { SHIHTI MAT } 3 \text { (Mat) } 2(B)=
\end{aligned}
$$

- An error occurs if you try to add, subtract matrices whose dimensions are different from each other, or multiply a matrix whose number of columns is different from that of the matrix by which you are multiplying it.


## ■ Calculating the Scalar Product of a Matrix

Use the procedure shown below to obtain the scalar product (fixed multiple) of a matrix.

- Example: Multiply Matrix $C=\left[\begin{array}{rr}2 & -1 \\ -5 & 3\end{array}\right]$ by $3 .\left(\left[\begin{array}{rr}6 & -3 \\ -15 & 9\end{array}\right]\right)$

| $\text { trix C } 2 x$ | SHHF MAT 1 (Dim) 3(C) 2 E |
| :---: | :---: |
| (Element input) |  |
| (3×MatC) | $3 \boldsymbol{x}$ SHmF Mat 3 (Mat) 3 (C) |

## ■ Obtaining the Determinant of a Matrix

You can use the procedure below to determine the determinant of a square matrix.

- Example: To obtain the determinant of

|  | $A=\left[\begin{array}{rrr}2 & -1 & 6 \\ 5 & 0 & 1 \\ 3 & 2 & 4\end{array}\right]$ | (Result: 73) |
| :---: | :---: | :---: |
| (Matrix A $3 \times 3$ ) | SHHFP MAT 1 (Dis | m) 1 (A) 3 |
| (Element input) | $2 \boldsymbol{E}$ (-1) | 5 E0 |
|  |  | $3 \boldsymbol{E}=4$ |
| (DetMatA) |  | SHHTP MAT $\triangle$ |
|  | SHHFI | 3 (Mat) 1 |

- The above procedure results in an error if a non-square matrix is specified.


## ■ Transposing a Matrix

Use the procedure described below when you want to transpose a matrix.

- Example: To transpose Matrix $B=\left[\begin{array}{lll}5 & 7 & 4 \\ 8 & 9 & 3\end{array}\right]$

$$
\left(\left[\begin{array}{ll}
5 & 8 \\
7 & 9 \\
4 & 3
\end{array}\right]\right)
$$

(Matrix B $2 \times 3$ )
SHIFT MAT 1 (Dim) 2 (B) 2 E 3 =

(TrnMatB)

$$
\begin{aligned}
& \text { SHHIF MAT } \triangle 2 \text { (Trn) } \\
& \text { SHIFT MAT } 3 \text { (Mat) } 2 \text { (B) }=
\end{aligned}
$$

## ■ Inverting a Matrix

You can use the procedure below to invert a square matrix.

- Example: To invert Matrix $C=\left[\begin{array}{rrr}-3 & 6 & -11 \\ 3 & -4 & 6 \\ 4 & -8 & 13\end{array}\right]$

$$
\left(\left[\begin{array}{lrl}
-0.4 & 1 & -0.8 \\
-1.5 & 0.5 & -1.5 \\
-0.8 & 0 & -0.6
\end{array}\right]\right)
$$

(Matrix C $3 \times 3$ ) SHIFT MAT 1 (Dim) 3 (C) $3 \boldsymbol{=} \boldsymbol{=}$
 $6 \boldsymbol{E} \boldsymbol{F} 8 \boldsymbol{( 1 ) \boldsymbol { E }} 13 \boldsymbol{A C}$
$\left(\right.$ MatC $\left.^{-1}\right) \quad$ SHIFT MAT 3 (Mat) 3 (C) $\boldsymbol{x - 1} \boldsymbol{E}$

- The above procedure results in an error if a non-square matrix or a matrix for which there is no inverse (determinant $=0$ ) is specified.


## $\square$ Determining the Absolute Value of a Matrix

You can use the procedure described below to determine the absolute value of a matrix.

- Example: To determine the absolute value of the matrix produced by the inversion in the previous example.
$\left(\left[\begin{array}{rrr}0.4 & 1 & 0.8 \\ 1.5 & 0.5 & 1.5 \\ 0.8 & 0 & 0.6\end{array}\right]\right)$
(AbsMatAns)
SHIFT Abs SHIFT MAT 3 (Mat) 4 (Ans) $=$


## Vector Calculations CVCT

The procedures in this section describe how to create a vector with a dimension up to three, and how to add, subtract, and multiply vectors, and how to obtain the scalar product, inner product, outer product, and absolute value of a vector. You can have up to three vectors in memory at one time.

Use the moom key to enter the VCT Mode when you want to perform vector calculations.
VCT
NOOE mOOE mOOE 3

Note that you must create one or more vector before you can perform vector calculations.

- You can have up to three vectors, named A, B, and C, in memory at one time.
- The results of vector calculations are stored automatically into VctAns memory. You can use the matrix in VctAns memory in subsequent vector calculations.


## ■ Creating a Vector

To create a vector, press suntr vat 1 (Dim), specify a vector name (A, B, or C), and then specify the dimensions of the vector. Next, follow the prompts that appear input values that make up the elements of the vector.


You can use the $\triangle$ and keys to move about the vector in order to view or edit its elements.

To exit the vector screen, press $\overline{\mathbf{A C}}$.

## ■ Editing Vector Elements

Press SNHFT VCT 2 (Edit) and then specify the name (A, B, C) of the vector you want to edit to display a screen for editing the elements of the vector.

## ■ Adding and Subtracting Vectors

Use the procedures described below to add and subtract vectors.

- Example: To add Vector $\mathrm{A}=(1-23)$ to Vector $\mathrm{B}=(45$ -6). (Result: (5 3-3))

| (3-dimensional Vector A ) | shlit VCT 1 (Dim) 1 (A) $3=$ |
| :---: | :---: |
| (Element input) | $=(-) 2=3=A$ |
| (3-dimensional Vector B) | SHIFT VCT 1 (Dim) 2 (B) 3 = |
| (Element input) | $=5=(-) 6$ AC |
| $(\mathrm{Vct} A+\mathrm{VctB})$ | SHIFT VCT 3 (Vct) 1 (A) + |
|  | SHIFT VCT $3(\mathrm{Vct}) 2(\mathrm{~B})=$ |

- An error occurs in the above procedure if you specify vectors of different dimensions.


## ■ Calculating the Scalar Product of a Vector

Use the procedure shown below to obtain the scalar product (fixed multiple) of a vector.

- Example: To multiply Vector $C=\left(\begin{array}{ll}-7.8 & 9) \\ \text { by } 5 .\end{array}\right.$
(Result: (-39 45))

| (2-dimensional Vector C) | SHIFT VGT 1 (Dim) 3 |
| :---: | :---: |
| (Element input) | (-) $7 \bullet 8$ - 9 E AC |
| $\times \mathrm{VctC})$ | $5 \times$ SHIFT VCT 3 |

## $\square$ Calculating the Inner Product of Two Vectors

Use the procedure described below to obtain the inner product (•) for two vectors.

- Example: To calculate the inner product of Vector A and Vector B
(Result: -24)
(VctA•VctB)

$$
\begin{aligned}
& \text { SHHFTV VCT } 3 \text { (Vct) } 1 \text { (A) } \\
& \text { SHHFI VCT } \triangle 1 \text { (Dot) } \\
& \text { SHIFT VCT } 3(\mathrm{Vct}) 2(\mathrm{~B})=
\end{aligned}
$$

- An error occurs in the above procedure if you specify vectors of different dimensions.


## ■ Calculating the Outer Product of Two Vectors

Use the procedure described below to obtain the outer product for two vectors.

- Example: To calculate the outer product of Vector A and Vector B
(Result: (-3, 18, 13))
(VctA×VctB)

$$
\begin{aligned}
& \text { SHHFT Vct } 3 \text { (Vct) } 1 \text { (A) } \boldsymbol{x} \\
& \text { SHIFT VCT } 3(\mathrm{Vct}) 2(\mathrm{~B})=
\end{aligned}
$$

- An error occurs in the above procedure if you specify vectors of different dimensions.


## $\square$ Determining the Absolute Value of a Vector

Use the procedure shown below to obtain the absolute value (size) of a vector.

- Example: To determine the absolute value of Vector C (Result: 11.90965994)

- Example: To determine the size of the angle (angle unit: Deg) formed by vectors $A=\left(\begin{array}{lll}-1 & 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 2\end{array}\right)$, and the size 1 vector perpendicular to both $A$ and $B$.
(Result: 108.4349488 ${ }^{\circ}$ )
$\cos \theta=\frac{(\mathrm{A} \cdot \mathrm{B})}{|\mathrm{A}||\mathrm{B}|}$, which becomes $\theta=\cos ^{-1} \frac{(\mathrm{~A} \cdot \mathrm{~B})}{|\mathrm{A}||\mathrm{B}|}$
Size 1 vector perpendicular to both $A$ and $B=\frac{A \times B}{|A \times B|}$
(3-dimensional Vector A )
(Element input)
(3-dimensional Vector B)
(Element input)
(VctA•VctB) SHIFT VCT 3 (Vct) 1 (A) SHIFT VCT 1 (Dot)



## Metric Gonversions <br> COMP

Use the moog key to enter the COMP Mode when you want to perform metric conversions.
COMP ........................................................... noe 1

- A total of 20 different conversion pairs are built-in to provide quick and easy conversion to and from metric units.
- See the Conversion Pair Table for a complete list of available conversion pairs.
- When inputting a negative value, enclose it within parentheses $\square, \square$.
- Example: To convert -31 degrees Celsius to Fahrenheit


38 is the Celsius-to-Fahrenheit conversion pair number.

## - Conversion Pair Table

Based on NIST Special Publication 811 (1995).

| To perform this conversion: | Input this pair number: | To perform this conversion: | Input this pair number: |
| :---: | :---: | :---: | :---: |
| in $\rightarrow$ cm | 01 | $\mathrm{OZ} \rightarrow \mathrm{g}$ | 21 |
| $\mathrm{cm} \rightarrow$ in | 02 | $\mathrm{g} \rightarrow \mathrm{Oz}$ | 22 |
| $\mathrm{ft} \rightarrow \mathrm{m}$ | 03 | $\mathrm{lb} \rightarrow \mathrm{kg}$ | 23 |
| $\mathrm{m} \rightarrow \mathrm{ft}$ | 04 | $\mathrm{kg} \rightarrow \mathrm{lb}$ | 24 |
| $\mathrm{yd} \rightarrow \mathrm{m}$ | 05 | $\mathrm{atm} \rightarrow \mathrm{Pa}$ | 25 |
| $\mathrm{m} \rightarrow \mathrm{yd}$ | 06 | $\mathrm{Pa} \rightarrow \mathrm{atm}$ | 26 |
| mile $\rightarrow$ km | 07 | $\mathrm{mmHg} \rightarrow \mathrm{Pa}$ | 27 |
| $\mathrm{km} \rightarrow$ mile | 08 | $\mathrm{Pa} \rightarrow \mathrm{mmHg}$ | 28 |
| n mile $\rightarrow \mathrm{m}$ | 09 | $\mathrm{hp} \rightarrow \mathrm{kW}$ | 29 |
| $\mathrm{m} \rightarrow \mathrm{n}$ mile | 10 | kW $\rightarrow$ hp | 30 |
| acre $\rightarrow \mathrm{m}^{2}$ | 11 | $\mathrm{kgf} / \mathrm{cm}^{2} \rightarrow \mathrm{~Pa}$ | 31 |
| $\mathrm{m}^{2} \rightarrow$ acre | 12 | $\mathrm{Pa} \rightarrow \mathrm{kgf} / \mathrm{cm}^{2}$ | 32 |
| gal (US) $\rightarrow \ell$ | 13 | kgf॰m $\rightarrow$ J | 33 |
| $\ell \rightarrow \mathrm{gal}$ (US) | 14 | $\mathrm{J} \rightarrow \mathrm{kgf} \bullet \mathrm{m}$ | 34 |
| gal (UK) $\rightarrow \ell$ | 15 | $\mathrm{lbf} / \mathrm{in}^{2} \rightarrow \mathrm{kPa}$ | 35 |
| $\ell \rightarrow \mathrm{gal}$ (UK) | 16 | $\mathrm{kPa} \rightarrow \mathrm{lbf} / \mathrm{in}^{2}$ | 36 |
| $\mathrm{pc} \rightarrow \mathrm{km}$ | 17 | ${ }^{\circ} \mathrm{F} \rightarrow{ }^{\circ} \mathrm{C}$ | 37 |
| $\mathrm{km} \rightarrow \mathrm{pc}$ | 18 | $\mathrm{C} \rightarrow{ }^{\circ} \mathrm{F}$ | 38 |
| $\mathrm{km} / \mathrm{h} \rightarrow \mathrm{m} / \mathrm{s}$ | 19 | $J \rightarrow$ cal | 39 |
| $\mathrm{m} / \mathrm{s} \rightarrow \mathrm{km} / \mathrm{h}$ | 20 | cal $\rightarrow$ J | 40 |

## Scientific Constants <br> COMP

Use the wooe key to enter the COMP Mode when you want to perform calculations using scientific constants.
COMP
(100) 1

- A total of 40 commonly-used scientific constants, such as the speed of light in a vacuum and Planck's constant are built-in for quick and easy lookup whenever you need them.
- Simply input the number that corresponds to the scientific constant you want to look up and it appears instantly on the display.
- See the Scientific Constant Table for a complete list of available constants.
- Example: To determine how much total energy a person weighing 65 kg has $\left(E=\mathrm{mc}^{2}=5.841908662 \times \mathbf{1 0}^{18}\right)$


28 is the "speed of light in vacuum" constant number.

## - Scientific Constant Table

Based on ISO Standard (1992) data and CODATA recommended values (1998).

| To select this constant: | Input this scientific <br> constant number: |
| :--- | :---: |
| proton mass $(\mathrm{mp})$ | 01 |
| neutron mass $(\mathrm{mn})$ | 02 |
| electron mass $(\mathrm{me})$ | 03 |
| muon mass $(\mathrm{m} \mu)$ | 04 |
| Bohr radius $\left(\mathrm{a}_{0}\right)$ | 05 |
| Planck constant (h) | 06 |
| nuclear magneton $(\mu \mathrm{N})$ | 07 |
| Bohr magneton $(\mu \mathrm{B})$ | 08 |
| Planck constant, rationalized $(\hbar)$ | 09 |
| fine-structure constant $(\alpha)$ | 10 |
| classical electron radius $(\mathrm{re})$ | 11 |
| Compton wavelength $(\lambda \mathrm{c})$ | 12 |
| proton gyromagnetic ratio $(\gamma \mathrm{p})$ | 13 |
| proton Compton wavelength $(\lambda \mathrm{cp})$ | 14 |
| neutron Compton wavelength $(\lambda \mathrm{cn})$ | 15 |
| Rydberg constant $(\mathrm{R} \infty)$ | 16 |
| atomic mass unit $(\mathrm{u})$ | 17 |
| proton magnetic moment $(\mu \mathrm{p})$ | 18 |
| electron magnetic moment $(\mu \mathrm{e})$ | 19 |
| neutron magnetic moment $(\mu \mathrm{n})$ | 20 |
| muon magnetic moment $(\mu \mu)$ | 21 |
| Faraday constant $(\mathrm{F})$ | 22 |
| elementary charge $(\mathrm{e})$ | 23 |
| Avogadro constant $(\mathrm{NA})$ | 24 |
| Boltzmann constant $(\mathrm{k})$ | 25 |
|  |  |


| To select this constant: | Input this scientific <br> constant number: |
| :--- | :---: |
| molar volume of ideal gas $(\mathrm{Vm})$ | 26 |
| molar gas constant $(\mathrm{R})$ | 27 |
| speed of light in vacuum $\left(\mathrm{C}_{0}\right)$ | 28 |
| first radiation constant $\left(\mathrm{C}_{1}\right)$ | 29 |
| second radiation constant $\left(\mathrm{C}_{2}\right)$ | 30 |
| Stefan-Boltzmann constant $(\sigma)$ | 31 |
| electric constant $\left(\varepsilon_{0}\right)$ | 32 |
| magnetic constant $\left(\mu_{0}\right)$ | 33 |
| magnetic flux quantum $\left(\phi_{0}\right)$ | 34 |
| standard acceleration of gravity $(\mathrm{g})$ | 35 |
| conductance quantum $\left(\mathrm{G}_{0}\right)$ | 36 |
| characteristic impedance of vacuum $\left(\mathrm{Z}_{0}\right)$ | 37 |
| Celsius temperature $(t)$ | 38 |
| Newtonian constant of gravitation $(\mathrm{G})$ | 39 |
| standard atmosphere $(a t m)$ | 40 |

## ■ Input Ranges

## Internal digits: 12

Accuracy*: As a rule, accuracy is $\pm 1$ at the 10th digit.

| Functions | Input Range |  |
| :---: | :---: | :---: |
| $\sin x$ | DEG | $0 \leqq\|x\| \leqq 4.499999999 \times 10^{10}$ |
|  | RAD | $0 \leqq\|x\| \leqq 785398163.3$ |
|  | GRA | $0 \leqq\|x\| \leqq 4.999999999 \times 10^{10}$ |
| $\cos x$ | DEG | $0 \leqq\|x\| \leqq 4.500000008 \times 10^{10}$ |
|  | RAD | $0 \leqq\|x\| \leqq 785398164.9$ |
|  | GRA | $0 \leqq\|x\| \leqq 5.000000009 \times 10^{10}$ |
| $\tan x$ | DEG | Same as $\sin x$, except when $\|x\|=(2 n-1) \times 90$. |
|  | RAD | Same as $\sin x$, except when $\|x\|=(2 n-1) \times \pi / 2$. |
|  | GRA | Same as $\sin x$, except when $\|x\|=(2 n-1) \times 100$ |
| $\sin ^{-1} x$ | $0 \leqq\|x\| \leqq 1$ |  |
| $\cos ^{-1} x$ |  |  |
| $\tan ^{-1} x$ | $0 \leqq\|x\| \leqq 9.999999999 \times 10^{99}$ |  |
| $\sinh x$ | $0 \leqq\|x\| \leqq 230.2585092$ |  |
| $\cosh x$ |  |  |
| $\sinh ^{-1} x$ | $0 \leqq\|x\| \leqq 4.999999999 \times 10^{99}$ |  |
| $\cosh ^{-1} x$ | $1 \leqq x \leqq 4.999999999 \times 10^{99}$ |  |
| $\tanh x$ | $0 \leqq\|x\| \leqq 9.999999999 \times 10^{99}$ |  |
| $\tanh ^{-1} x$ | $0 \leqq\|x\| \leqq 9.999999999 \times 10^{-1}$ |  |
| $\log x / \ln x$ | $0<x \leqq 9.999999999 \times 10^{99}$ |  |
| $10^{x}$ | $-9.999999999 \times 10^{99} \leqq x \leqq 99.99999999$ |  |
| $e^{x}$ | $-9.999999999 \times 10^{99} \leqq x \leqq 230.2585092$ |  |


| Functions | Input Range |
| :---: | :---: |
| $\sqrt{x}$ | $0 \leqq x<1 \times 10^{100}$ |
| $x^{2}$ | $\|x\|<1 \times 10^{50}$ |
| 1/x | $\|x\|<1 \times 10^{100} ; x \neq 0$ |
| $\sqrt[3]{x}$ | $\|x\|<1 \times 10^{100}$ |
| $x$ ! | $0 \leqq x \leqq 69$ ( $x$ is an integer) |
| $n \mathrm{Pr}$ | $\begin{aligned} & 0 \leqq n<1 \times 10^{10}, 0 \leqq r \leqq n(n, r \text { are integers }) \\ & 1 \leqq\{n!/(n-r)!\}<1 \times 10^{100} \end{aligned}$ |
| $n \mathrm{Cr}$ | $\begin{aligned} & 0 \leqq n<1 \times 10^{10}, 0 \leqq r \leqq n(n, r \text { are integers }) \\ & 1 \leqq[n!/\{r!(n-r)!\}]<1 \times 10^{100} \\ & \hline \end{aligned}$ |
| $\operatorname{Pol}(x, y)$ | $\begin{array}{\|l\|} \hline\|x\|,\|y\| \leqq 9.999999999 \times 10^{49} \\ \left(x^{2}+y^{2}\right) \leqq 9.999999999 \times 10^{99} \\ \hline \end{array}$ |
| $\operatorname{Rec}(r, \theta)$ | $\begin{aligned} & 0 \leqq r \leqq 9.999999999 \times 10^{99} \\ & \theta: \text { Same as } \sin x \end{aligned}$ |
| - '" | $\begin{aligned} & \|a\|, b, c<1 \times 10^{100} \\ & 0 \leqq b, c \end{aligned}$ |
| $\leftarrow "$ | $\|x\|<1 \times 10^{100}$ <br> Decimal $\leftrightarrow$ Sexagesimal Conversions $0^{\circ} 0^{\circ} 0^{\circ} \leqq\|x\| \leqq 999999^{\circ} 59^{\circ}$ |
| $\wedge\left(x^{y}\right)$ | $\begin{aligned} & x>0:-1 \times 10^{100}<y \log x<100 \\ & x=0: y>0 \\ & x<0: y=n, \frac{1}{2 n+1}(n \text { is an integer }) \\ & \text { However: }-1 \times 10^{100}<y \log \|x\|<100 \end{aligned}$ |
| $\sqrt[x]{y}$ | $\begin{aligned} & y>0: x \neq 0 \\ & -1 \times 10^{100}<1 / x \log y<100 \\ & y=0: x>0 \\ & y<0: x=2 n+1, \frac{1}{n}(n \neq 0 ; n \text { is an integer }) \\ & \text { However: }-1 \times 10^{100}<1 / x \log \|y\|<100 \\ & \hline \end{aligned}$ |
| $a^{b / c}$ | Total of integer, numerator, and denominator must be 10 digits or less (including division marks). |
| $\begin{gathered} \text { SD } \\ \text { (REG) } \end{gathered}$ | $\begin{aligned} & \|x\|<1 \times 10^{50} \\ & \|y\|<1 \times 10^{50} \\ & \|n\|<1 \times 10^{100} \\ & x \sigma n, y \sigma n, \bar{x}, \bar{y}: n \neq 0 \\ & x \sigma n-1, y \sigma n-1, \mathrm{~A}, \mathrm{~B}, r: n \neq 0,1 \end{aligned}$ |

